
Different types of data included in Evaluation Reports in MSI Eureka

- 1) Phase Equilibria
- 2) Crystal Structures
- 3) Morphology, Reactions
- 4) Various physical properties, e.g. mechanical, magnetic, kinetics, electrical, amorphous, semi-/superconductivity, interface phenomena, etc.
- 5) Thermodynamic Properties
- 6) Electronic Structures
- 7) Appplications others

Phase Equilibria Data

- Literature Data Overview
- Binary Boundary Systems
- Crystallographic Data of Solid Phases
- Quasibinary Systems
- Invariant Equilibria
- Liquidus, Solidus and Solvus Surfaces
- Isothermal Sections
- Temperature Composition Sections
- Thermodynamics

Crystal Structure Data

Phase/ Temperature Range (°C)	Pearson Symbol/ Space Group/ Prototype	Lattice Parameters (pm)	Comments/References
(Al) < 660.5	cF4_ Fm3m Cu	a = 404.96 a = 405.2	pure Al at 25°C [Mas2] Solubility limits: at 0% Ti, 0.04 at.% Ta [1972Fer], at 0% Ta, 0.8 at.% Ti [2007Wit] or 0.6 at.% Ti [1992Kat]
$\begin{array}{l} \beta, (\beta Ti, Ta) \\ Ti_{1:x:y} Ta_x A l_y \\ < 3020 \end{array}$	cI2 Im3m W	ſ	complete solid solution [Mas2], $0 < x < 1$ at $T = 1440^{\circ}C$, $x = 0$ to 1 and $y = 0$ to 0.5 [1993Das]; at $T = 1350^{\circ}C$, $x = 0$ to 1 and $y = 0$ to 0.42 [1995Wea]; Fig. 1: Lattice param

σ, CrFe	tP30	a = 879.95	44.5 to 50.0 at.% Cr [V-C]
830 - 440	P4 ₂ /mnm CrFe	c = 454.42	
* V	P6 ₃ /m	$a = 4068.0 \pm 0.07$ $c = 1254.6 \pm 0.01$ atoms/cell =	Cr _{10.71} Fe _{8.68} Al _{80.61} single crystal, elicited from ingot after inductive melting
		1184.56	followed cooling in sand bath [2000Mo2].
			Sometimes called "H-CrFeAl".
		a = 4000	Cr ₁₁ Fe ₈ Al ₈₁ together with
		c = 1240	κ-CrFeAl in as-cast
			CrFe ₂ Al ₁₂ alloy [1999Sui]
* "κ-CrFeAl"	hexagonal,	-	In as-cast CrFe ₂ Al ₁₂ alloy
	κ-Cr ₁₈ Ni ₆ Al ₇₆		together with v [1999Sui]
* "O-CrFeAl"	orthorhombic	a = 1230	In as-cast Cr ₁₁ Fe ₈ Al ₈₁
	body-centered	b = 1240	alloy together with
	•	c = 3070	O1-CrFeAl and

	Phase Designation	Crystal System	Compositi	ion (mass%)	1	Lattice Parameters (pm)	References
			Fe	Al	Si		
n	μ ₁	Cubic	25.4 31.9 27.3	49.1 62.5 65.7	25.5 5.6 7.0	- a = 1254.83 a = 1254.83	[1937Ser] [1950Phr] [1952Arm]
			-	-	-	a = 1254.53	[1955Arm] [1954Spi]
			30.2-32.8 31.9	58.1-60.0 61.7	7.2-11.7 6.4 -	a = 1254.8 a = 1256 a = 1250 to 1270	[1955Obi] [1967Coo] [1967Mun]
			31.1	60.8	8.1	$a = 1250 \pm 10$ a = 1260.0	[1967Sun] [1977Sim]
			29.2-30.7 25.0	61.0-64.2 69.7	5.1-9.8 5.3	a = 1250 a = 1256	[1985Don1] [1986Liu1] [1986Liu2] [1987Liu]
			-	-	-	a = 1256 a = 1250 a = 1250 a = 1256	[1987Tur] [1988Ben2] [1996Mul] [2004Kra] [2005Kra]
	μ ₂	Tetragonal	-	-	-	a = 495.0 c = 707.0	[2006Kra]
			-	-	-	a = 1260.0 c = 3720.0	[1982Wes]
	μ ₃	Orthorhombic	-	-	-	a = 609.0 b = 996.0 c = 374.0	[1936Jae]
\perp			29.2	59.5	11.3	a = 4360.0	[1952Arm]

			[19	995Wea	1];								
			Fig	. 1: La	attice p	aramete	rs c	of gam	ma ph	ase as f	unction	of cor	nposition
				3.70 -			Τ						
(Ta)		a = 330.30		3.60 -			-			c/a		_	
< 3020 (βTi)		a = 330.65		3.50 -			-			C/a			
1670 - 882			c/a	3.40 -									
β_0 , $Ti_{1-x-y}Ta_xAl_y$ < 1427	cP2_ Pm3m	-		3.40									
	CsCl			,	Ĭ						c		Ĩ
													- 11.10
α, (αΤί)	hP2			3.20 -							а	_	- 11.00
Ti _{1-x-y} Ta _x Al _y 1491 - 1119 and	P6 ₃ /mmc Mg						-						¥ - اک 10.90 −
1491 - 1119 and	IVIG		a, Å	3.00 -			-						10.80
			В										
													- 10.70
				Ti₂Cu	l	10	20	30)	40	50	60	_ Zr₂Cu
				_				Z	.r, at%.				

Reactions, Morphology & Applications

Fig. 1: Pu-U-Zr. Partial reaction scheme

								Table 10: Key Pl	henomena that Control F	uel Perfo	ormance
Table 3: Invariant Four-Phase	Equilibr	ia						Phenomena	Experimental Observation	ns	Consequences
$\begin{tabular}{c} \textbf{Reaction} \\ \\ L+TiCu \leftrightarrow Ti_3Cu_4+Zr_{14}Cu_{51} \\ \\ \end{tabular}$	T (°C)	Type U ₁	Phase L TiCu	Composition (at.*) Cu Zr Ti 64.5 6.8 28 51.3 0 48	.7 .7			Fuel swelling	irradiation growth and grain boundary tearing; Xe/Kr bubble growth; solid fission product accum	nulation;	reactivity loss; rate of gas release; fiel/clad interaction stresses; thermal conductivity loss
$L + Ti_3Cu_4 + TiCu_2 \leftrightarrow Ti_2Cu_3$	874	D ₁ (P)	Ti ₃ Cu ₄ Zr ₁₄ Cu ₅₁ L Ti ₃ Cu ₄ TiCu ₂	73.4 25.2 1.4 57.1 0 42 66.7 0 33	4 .9 .3			Fuel constituent migration	alloy and burnup rate effect U/Zr interdiffusion; critical Pu threshold		lowered solidus; complexities of properties modeling
$L + TiCu_2 \leftrightarrow TiCu_4 + Ti_2Cu_3$	869	D ₂ (U)	TiCu ₂ TiCu ₄ Ti ₂ Cu ₃	60.0 0 40 73.7 2.0 24 66.7 0 33 78.7 0 21 U-Zr	.3		Pu-U-Zr	Fuel/cladding chemical interaction	penetration into cladding by and lanthanide series fission products; diffusion of cladding consti- into fuel;	ituents	cladding wall thinning; ductility degradation of interaction layer in cladding; eutectic composition approached in fuel
$L + (Cu) \leftrightarrow TiCu_4 + ZrCu_5$	863	U ₂	L (Cu) TiCu ₄ ZrCu ₅	$ \begin{array}{c c} 662 & e_1 \\ \hline (\beta U) \Rightarrow \gamma + (\alpha U) \end{array} $	$(\beta U) + \gamma = \eta$	(βU)+η+ζ	670 $(\beta U) + \gamma + \eta \Leftrightarrow$ $(\beta U) + \zeta + \gamma$	Cladding deformation	extensive nickel loss in aus irradiation/thermal creep by fission gas pressure loading	y	stress-rupture lifetime determines ultimate burnup achieved;
$L + Zr_{14}Cu_{51} \leftrightarrow Zr_{3}Cu_{8} + \tau_{1}$ $L + \gamma \leftrightarrow \tau_{1} + TiCu$	856	U ₃	$\begin{bmatrix} L \\ Zr_{14}Cu_5 \\ Zr_3Cu_8 \\ \tau_1 \end{bmatrix}$	$ \begin{array}{c c} 617 & p_2 \\ \hline \gamma + (\alpha U) \rightleftharpoons \delta \\ \hline 606 & e_3 \\ \hline \gamma = (\alpha Zr) + \delta \\ \end{array} $	590 p ₃		650 $\gamma + (\beta U) = (\alpha U)$ (αU) $595 \gamma + (\alpha U) = (\alpha U)$	-ζ+γ	$\begin{array}{c c} \hline 618 & e_2 \\ \hline \gamma \bowtie (\sigma Zr) + (\delta Pu) \\ \hline \end{array}$		hali aladdina atioma aon laad ta
	المراد	Q.			(βU) + η ↔ ζ	(βU)+(αU)+ζ	$\frac{\delta + (\alpha U) + \zeta}{\delta}$ $\delta = \frac{\delta}{\gamma} + (\alpha Z_T) \Rightarrow \delta + (\delta U)$	ζ+η+γ δ+ζ+γ			
	Ž Ž				$\begin{array}{c c} 560 & e_4 \\ \hline (\beta U) & \leadsto (\alpha U) + \zeta \end{array}$		+ γ +(δ Pu) -550 γ + δ + ζ + η & to a lower temperature rea	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(\kappa)+(\delta Pu)$ $380 \qquad P_4$ $(\alpha Zr)+(\delta Pu)=\kappa(\delta)$		

Physical Properties

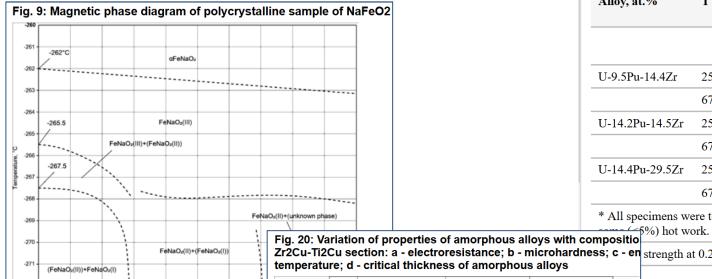
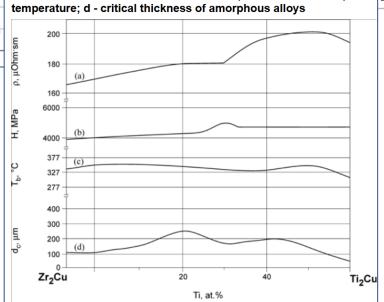
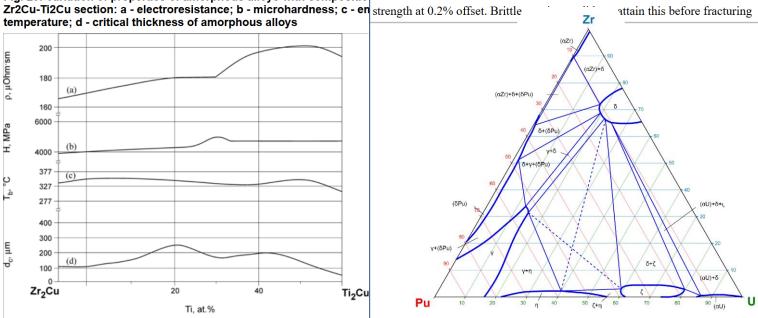




Table 8: Variations of Tensile Properties with Temperature in Homogenized a **Plutonium-Zirconium Alloys**

		_			
Alloy, at.%	T (°C)	Tensile strength		Yong's modulus (E) (GPa)	Type failure
		Ultimate (MPa)	Yield** (MPa)		
U-9.5Pu-14.4Zr	25	177.56		170.69	Brittle
	675	11.77	10.79	13.73	Ductile
U-14.2Pu-14.5Zr	25	39.24		103.99	Brittle
	675	11.77	10.79	15.70	Ductile
U-14.4Pu-29.5Zr	25	75.54		127.53	Brittle
	675	28.45	27.47	18.64	Ductile

^{*} All specimens were tested in creep prior the tensile tests and therefore contain

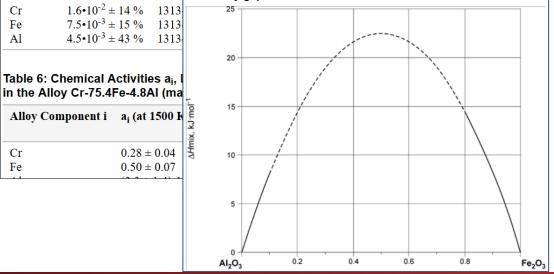
Thermodynamic Data

Table 4: Heat Treatment Schedule for Different Alloys b						
Alloys with > 50 n	nass% Fe	Alloys with > 10 mass% Al				
Temperature (°C)	Time (h)	Temperature (°C)	Time (h)			
750	720	900	100			
700	1000	750	200			
650	720	700	500			
600	720	650	250			
500	2000	600	250			
480	2200	500	1200			

Table 5: Partial Pressures of Cr, Fe and Al over the Alloy Cr-75.4Fe-4 Measurements &Dgr;T [1992Hil]. Errors of A and B Values are Stand Overall Frrore

Overall El	1013		
Gaseous species i	p _i (Pa) at 1500 K	ΔT (K)	$ln p_i = -A \cdot 10^4 / T + B$
			29: Enthalpy of mixing

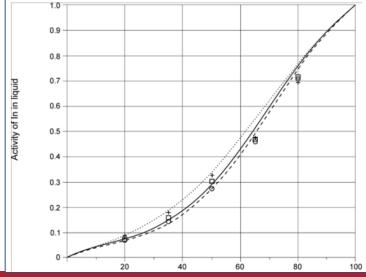
 $4.5 \cdot 10^{-3} \pm 43 \%$

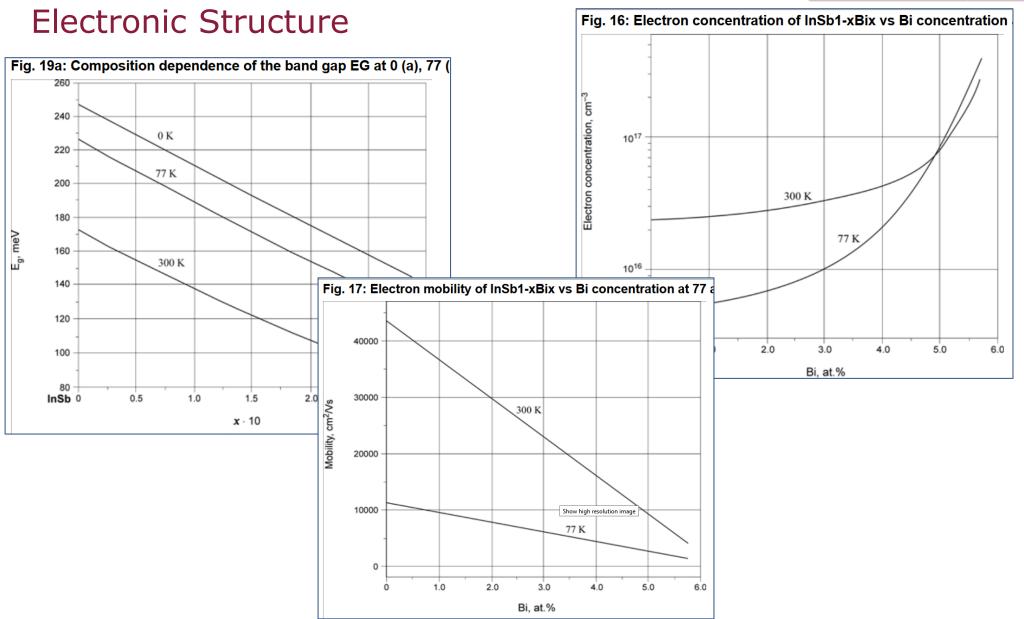

Cr

Fe

Cr

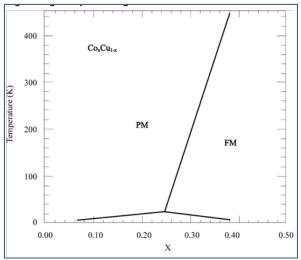
nthalpy of mixing in the Fe2O3-Al2O3 solid solution. The da miscibility gap

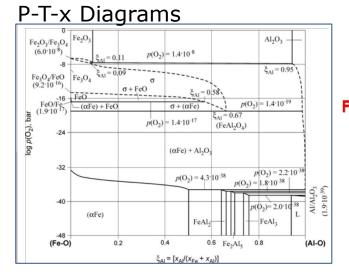

[1958Chu]

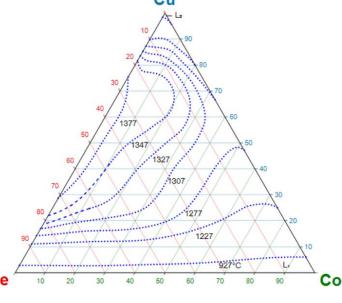

Reaction or Transformation	T (°C)	Quantity, per mol of compound (kJ•mol ⁻¹)	Comments
$L \rightarrow InSb$	525.7	$\Delta_{cr}H=47.0\pm6.1$	quantitative differential thermal analysis [1988Evg]
$L \rightarrow xInSb + (1-x)InBi$	T_L - T_S	$\Delta_{cr}H=56.4\pm7.3$	x = 0.99
	T_L - T_S	$\Delta_{cr}H=37.8\pm4.9$	x = 0.95
	T_L - T_S	$\Delta_{cr}H=38.8\pm5.0$	x = 0.80
	T_L - T_S	$\Delta_{cr}H=26.2\pm3.4$	x = 0.60
	T_L - T_S	$\Delta_{cr}H=22.5\pm2.9$	x = 0.38
	T _L -T _S	$\Delta_{cr}H=31.2\pm4.0$	x = 0.20
	T_L - T_S	$\Delta_{cr}H=31.4\pm4.1$	x = 0.05
	$T_e = 110$	$\Delta_{cr}H=10.0\pm1.3$	Eutectic
$L \rightarrow xInSb + (1-x)In_2Bi$	T_L - T_S	$\Delta_{cr}H=37.8\pm4.9$	x = 0.95
	T_L - T_S	$\Delta_{\rm cr}H = 38.8$	

 T_L - T_S

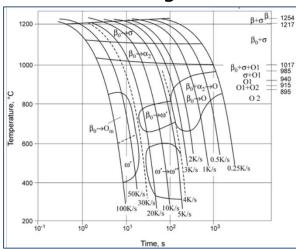
Fig. 15: Activity of In in liquid alloys at 727°C along sections with $\Delta_{cr}H = 26.2$ results [1997Kam] (crosses - In-Bi0.8Sb0.2, squares - InBi0.5Sb0. [2002Cui] (dots - In-Bi0.8Sb0.2, solid - In-Bi0.5Sb0.5, dashed - In-Bi0.5Sb0.5






Other types of phase diagrams

Magnetic Phase Diagrams




Metastable Diagrams

CCT & TTT Diagrams

Order-Disorder Diagrams

Direct Answers from the Phase Diagrams in MSI Eureka

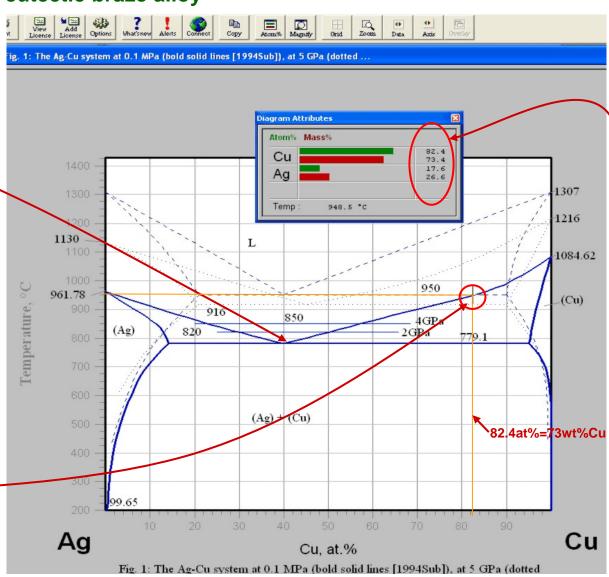
Example case studies for the following areas of materials research

- Brazing
- 2) Brazing & Solidification
- 3) Materials Compatibility
- 4) Solidification

VISI Science Simplified

Area: Brazing

CASE 1: Brazing Cu-parts with a eutectic braze alloy


QUESTION:

Brazing at 950°C; does the braze material change significantly its composition during brazing of Cuparts with a

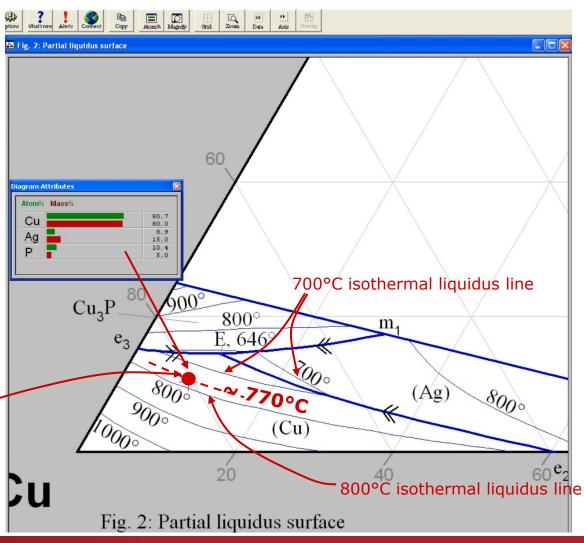
eutectic Ag-28wt%Cu braze material. How much Cu can dissolve in the melt at 950°C?

ANSWER:

FROM Ag-Cu, Fig. 1
The melt can pick up about
73 wt.% Cu at ambient pressure.

Area: Brazing/Solidification

CASE 2: Electronic devices; Ag15-80Cu-5P alloy as self-fluxing braze in an automated brazing process.


QUESTION (1)

Does this alloy offer *melting* temperatures that our devices can stand, i.e. lower then 800°C?

ANSWER (1):

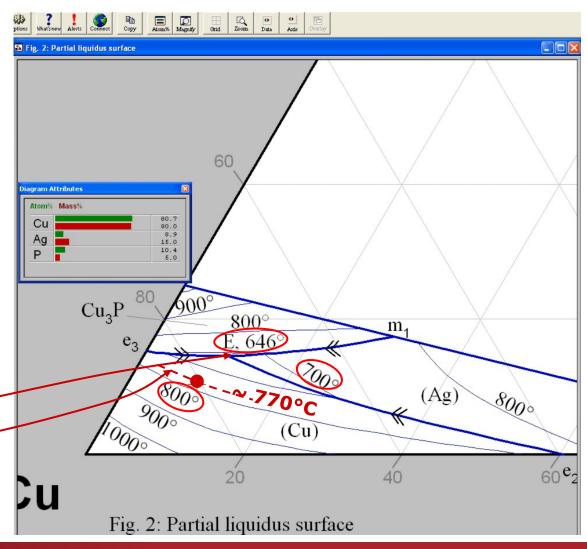
FROM Ag-Cu-P, Fig. 2:

Yes, melting temperature of this alloyis about (770°C)

VS Science Simplified

Area: Brazing/Solidification

CASE 2: 1st answer was favourable, case continued:


QUESTION (2)

How critical will the temperature control be during the continuous joining process, i.e. how large is the *melting* range that this alloy offers?

ANSWER (2):

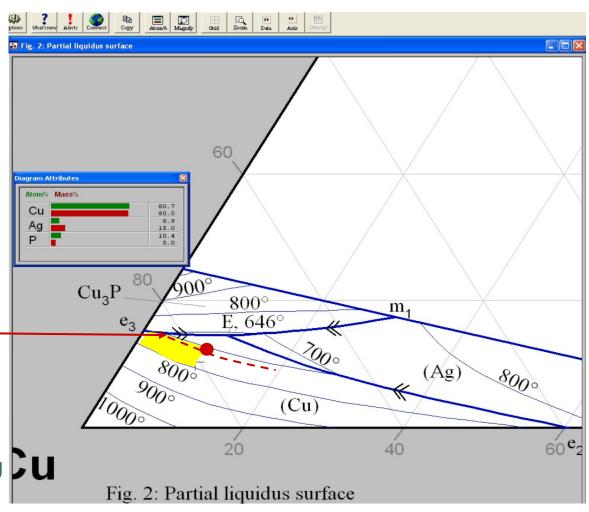
from System Report Ag-Cu-P, Fig. 2 and chapter Invariant Equilibria: *Melting range* of the Ag15-80Cu-5P alloy is ~770to 646°C

Conclusion: temperature control is not that critical

Area: Brazing/Solidification

CASE 2: 2nd answer was favourable, case continued:

QUESTION (3)


Materials costs: Can silver be substituted by copper, still staying in favorable melting conditions? How much?

ANSWER (3):

FROM Ag-Cu-P, Fig. 2:

Yellow area: concentration area for alloys having the same melting interval, but lower Ag contents /costs

Overall conclusion: promising material. Now check engineering properties, wettability, etc.

Area: Materials compatibility

CASE 3: Gold coated contacts in electronic devices are to be soldered. Suggested solder material Sn50-Pb50.

QUESTION:

Is the gold barrier inert against the attack of a Sn50-Pb50 alloy at 300°C?

ANSWER:

From Au-Pb-Sn, Fig. 9:
No, the alloy is liquid and dissolves Au along the yellow line, up to 19 wt.% Au before an intermetallic layer of AuSn starts forming at the interface.

Area: Materials compatibility

CASE 4: Laboratory work, in the course of research Ni50Al50 alloys

should be molten

QUESTION:

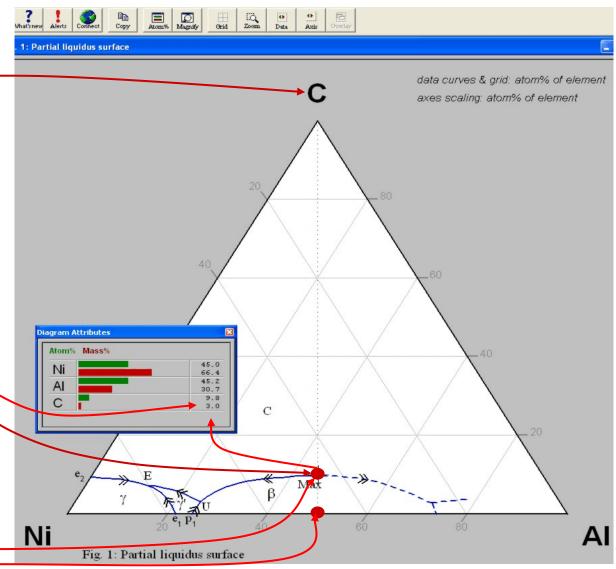
Could a graphite crucible be used to melt a NiAl alloy with 50 at.% Al?

ANSWER:

From Al-C-Ni, Fig. 1:

Yes, it is possible to melt Ni50Al50 in graphite, but at least 3 wt.% C

(10 at.% C) will dissolve in the


melt.

Attention:

the further studies are not on an

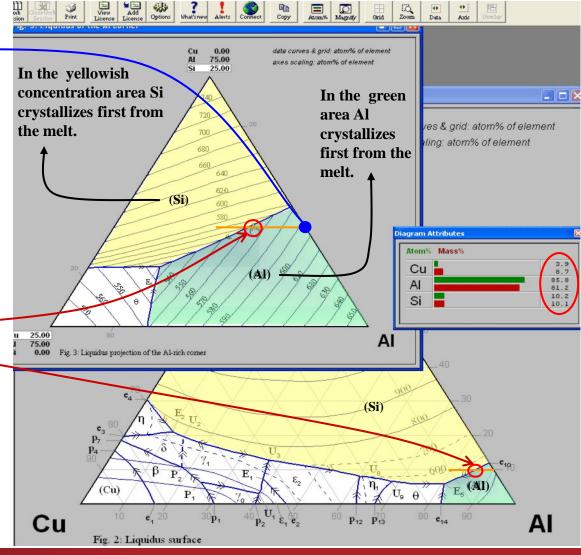
NiAl alloy anymore

but on a Ni-Al-Calloy.

Area: Solidification

CASE 5: In photolithographic processing our Al-Cu-Si alloys corrode. To reduce the corrosion, we need Silicon to precipitate primarily.

QUESTION:


In aAl90-10Si (wt.%) alloy, how much Al can be substituted by Cu before the primary solidification switches from Al to Si crystals?

ANSWER:

From Al-Cu-Si, Figs. 2&3:

Al81-Cu9-Si10

is the critical alloy; at that composition, having a liquidus temperature of 560°C, Silicon will crystallize from the melt

What information can one get from a phase diagram?

Phase diagrams are usually representations of a system A–B(– C...) which show the equilibrium phases and the phase equilibria among them in dependence of the two state variables T and x_B at p=1 bar.

A phase diagram shows:

- Which phases exist
- Homogeneity ranges of the phases
- Phase equilibria at given T or x_B
- Melting (solidus) temperature at x_B
- Melting behaviour of phases
- Compositions of coexisting phases
- Phase fractions (volume fractions)
- Type and T of invariant reactions
- Cooling/Heating path

More information from phase diagrams:

- Many properties scale with the melting temperature T_m
- Hints for the synthesis of specific phases or alloys
- Alloy development strategies (compositions, cooling rates, microstructures)
- Processing of the alloys (thermomechanical, heat treatment)

Source: MSIT Winter School, Dr. Martin Palm

www.msiport.com