top of page
MDlogo_383 transparent.png

Molecular Simulation of Fluids The SAFT Coarse Graining Technique

In this presentation we discuss the SAFT force field for molecular simulation of fluids. In this approach, a molecular-based equation of state is used to obtain coarse-grained intermolecular potentials that can then be employed in molecular simulation over a wide range of thermodynamic conditions. The macroscopic experimental data for the vapor−liquid equilibria (saturated liquid density and vapor pressure) of a given system are represented with the equation of state and used to estimate effective intermolecular parameters. This methodology allows for a reliable representation of the fluid-phase equilibria (for which the model was parametrized), as well as an accurate prediction of other properties such as the interfacial tension and transport properties of complex fluids, polymers, asphaltenes and mixtures. 

Through some examples, it is shown how the description of the fluid-phase behavior and the prediction of the other thermophysical properties obtained by molecular simulation using our SAFT Mie force fields are found to be of comparable quality (and sometimes superior) to that obtained using the more sophisticated all-atom (AA) and united-atom (UA) models commonly employed in the field.

Check your entries.

© 2019 by Materials Design, Inc. 

Privacy Policy
Materials Design® and MedeA® are registered trademarks of Materials Design, Inc.

We use cookies to provide the services and features offered on our website, and to improve our user experience. Learn more.

Related Items
bottom of page