top of page
MDlogo_383 transparent.png

A Multiscale Computational Framework for Property Prediction of Fluid Mixtures

Leveraging limited experimental data through simulation to understand the physical and chemical properties of fluids


Illustrating the unique, synergistic value of multiscale material property simulations for understanding organic fluid properties: 

-Vapor-liquid equilibria (VLE)


-Surface tension


-Thermal conductivity

-Heat capacity

Fluids are central to many industrial products and processes, with applications ranging from upstream oil and gas exploration and production to fuels, additives, and lubricants, as well as pharmaceuticals and drug delivery. Improvements in industrial processes currently rely on accurate modeling of heat and fluid flow, which require reliable data as numerical input. Due to the difficulties of obtaining experimental data of sufficient accuracy over the required ranges of temperature and pressure, fluid performance modelers are increasingly relying on powerful atomistic and multi-scale simulation techniques for the physical and chemical property values they need. The term “multi-scale modeling” comprises varying methodologies and levels of theory, starting at the molecular level and reaching “up” to continuum methods and equations of state.


The specific fluid properties or performance characteristics one needs to understand determine the time and length scales at which simulations must be performed. In turn, the relevant length and time scales dictate the level of theory which must be applied, whether first principles, atomistic, and/or statistical mechanics approaches. By this means, simpler constituent parts of complex systems may be analyzed individually, and the knowledge gained may then be reintegrated to provide insights into the combined system or process.

Applications to organic fluids of industrial relevance abound for properties such as vapor-liquid equilibria (VLE), solubility, surface tension, viscosity, thermal conductivity, and heat capacity. Using efficient simulation workflows, we illustrate the added synergistic value of performing simulations at multiple scales for determining diverse fluid properties. We present efficient protocols for deriving simple, easy-to-use correlations for selected properties based on large simulation datasets. Specific applications are used to illustrate the accuracy, application range, and methodological limits of different approaches. We then offer perspectives and assess development trends.

Check your entries.

© 2019 by Materials Design, Inc. 

Privacy Policy
Materials Design® and MedeA® are registered trademarks of Materials Design, Inc.

We use cookies to provide the services and features offered on our website, and to improve our user experience. Learn more.

Related Items
bottom of page